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Abstract
An algebraic method of constructing potentials for which the Schrödinger
equation with position dependent mass can be solved exactly is presented. A
general form of the generators of su(1,1) algebra has been employed with a
unified approach to the problem. Our systematic approach reproduces a number
of earlier results and also leads to some novelties. We show that the solutions
of the Schrödinger equation with position dependent mass are free from the
choice of parameters for position dependent mass. Two classes of potentials
are constructed that include almost all exactly solvable potentials.

PACS numbers: 03.65.Fb, 02.30.Gp

1. Introduction

The study of position dependent mass (PDM) Schrödinger equation has recently attracted
some interest [1, 2] arising from the study of electronic properties of semiconductors, liquid
crystals, quantum dots, and the recent progress of crystal-growth techniques for production
of non-uniform semiconductor specimen in which carrier effective mass depends on position
[3]. It is obvious that the study of the PDM Schrödinger equation has considerable impact on
condensed matter physics as well as related fields of physics.

Exact solvability of the Schrödinger equation with constant mass has been the main interest
since the early days of quantum mechanics [4]. It has been solved exactly for a large number of
potentials by employing various techniques. In fact, for exactly solvable potentials, its general
solution can be obtained in terms of some special functions by transforming the original
Schrödinger equation into the second order differential equation . Systematic studies of these
transformations have been given in [5] regarding the confluent hypergeometric functions. The
relations between the algebraic technique and the special function theory have been discussed
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in [6]. Recently various approaches have been presented in a unified way and a number of
earlier results have been reproduced [4]. In the present work we use the Lie algebraic technique
to construct the Hamiltonian for the PDM Schrödinger equation and obtain the solutions in
terms of the special functions.

In the PDM Schrödinger equation, the mass and momentum operator no longer commute.
The general expression for the kinetic energy operator was introduced by von Roos [7]:

T = 1
4 (mηpmεpmρ + mρpmεpmη) (1)

where η + ε + ρ = −1 is a constraint. One of the problems is the choice of parameters [8, 9].
In our approach we obtain an exact solution of the PDM Schrödinger equation without
any particular choice which leads to a general solution where the choice of the parameters
distinguishes the physical systems.

One can display a number of fruitful applications of the Lie algebraic technique, in
particular, in atomic and nuclear physics and other fields of physics. Our task here is to
obtain the exact solution of the PDM Schrödinger equation by the use of the su(1,1) algebra
technique.

The paper is organized as follows. In section 2 we present a general Hamiltonian by
using su(1,1) algebra and discuss its relation with the PDM Schrödinger equation. We obtain
a general expression for the potential. In section 3 we describe the application of the su(1,1)
algebra to obtain Coulomb, harmonic oscillator and Morse family potentials. In section 4 we
construct hyperbolic and trigonometric potentials. Finally we discuss our results in section 5.

2. Structure of the su(1,1) Lie algebra and PDM Schrödinger equation

The Lie algebraic technique is suitable for studying the PDM Schrödinger equation, because
it contains a first-derivative term. The su(1,1) Lie algebra is described by the commutation
relations,

[J+, J−] = −2J0 [J0, J±] = ±J±. (2)

The Casimir operator of this structure is given by

J 2 = −J±J∓ + J 2
0 ∓ J0. (3)

The eigenstate of J 2 and J0 can be denoted by |jN〉 where

J 2|jN〉 = j (j + 1)|jN〉 J0|jN〉 = −N |jN〉 (4)

while the allowed values of N are

N = −j,−j + 1,−j + 2, . . . = (−j + n) (5)

where n is a positive integer. We consider the most general form of the generators of the
algebra which was introduced by Sukumar [10]

J± = e±iφ

(
±h(x)

∂

∂x
± g(x) + f (x)J0 + c(x)

)

J0 = −i
∂

∂φ
.

(6)

The commutation relations (2) are satisfied when the functions h(x), f (x) and c(x) take the
forms

h(x) = r

r ′ f (x) = 1 + ar2

1 − ar2
c(x) = − br

1 − ar2
(7)
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where r = r(x) and a and b are constants. The differential realization (6) can be used to
derive the second order differential equations of the orthogonal polynomials. The differential
equations of these polynomials can be expressed in terms of Casimir operator J 2:

H = J 2 H |jN〉 = j (j + 1)|jN〉. (8)

Let us consider the basis function,

|jN〉 = e−iNφ�jN (x). (9)

In terms of the realizations (6) and with the basis (9), the Hamiltonian (8) takes the form

H = r2

r ′2
d2

dx2
+

r

r ′

(
2g − 2ar2

1 − ar2
− rr ′′

r ′2

)
d

dx

+ g2 + g +
rg′

r ′ − 2g

1 − ar2
− r(2N + br)(2aNr + b)

(1 − ar2)2
. (10)

Let us now turn our attention to the PDM Schrödinger equation which can be written as

HPDM = T + V (x) HPDMψ(x) = Eψ(x) (11)

where V (x) is the potential of the physical system and ψ(x) and E are eigenstates and
eigenvalues of the PDM Schrödinger equation. Introducing the eigenfunction and momentum
operator p

ψ(x) = −2mr2

r ′2 �(x) p = −i
d

dx
(12)

respectively, the position dependent mass Hamiltonian takes the form

HPDM = r2

r ′2
d2

dx2
+

r

r ′

(
4 − 4rr ′′

r ′2 +
rm′

r ′m

)
d

dx
+ 2 +

2r

r ′2

(
3rr ′′2

r ′2 − rr ′′′

r ′ − 3r ′′
)

+
m′r2

mr ′2

(
(1 + η)(ε + η)m′

m
+

(1 − ε)m′′

2m′ +
2(r ′2 − rr ′′)

rr ′

)
− 2mr2

r ′2 V (x) (13)

then comparing (13), (8) and (10), we obtain the following general expression for the potential,

V (x) − E = (2bN + r(b2 + a(4N2 − 1) + 2abNr))r ′2

2mr(1 − ar2)2

+
(j (j + 1))r ′2

2mr2
+

3r ′′2

8mr ′2 − r ′′′

4mr ′ + Vm(x) (14)

where Vm(x) is given by

Vm(x) = 1

4m2

(
(4ε(1 + η) + (1 + 2η)2)m′2

2m
− εm′′

)
(15)

when the function g(x) constrained to

g(x) = ar2 − 2

ar2 − 1
+

m′r
2mr ′ − 3rr ′′

2r ′2 . (16)

We have so far constructed a class of position dependent mass potentials which reduces to the
Natanzon class potentials for the constant mass. In this construction it has been emphasized
[11] that for the exactly solvable cases, the energy levels form an infinite sequence by fixing
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j and varying N, such that n takes values 0, 1, . . . ,∞ and one can obtain the full spectrum of
the Hamiltonian (13). But in the quasi-exactly solvable potentials [11, 12], there exist at most
N + 1 levels for each choice of N which can exactly be obtained. In the following section we
construct the quantum mechanical potentials.

3. Coulomb, harmonic oscillator and Morse family potentials

In order to obtain the corresponding potentials we choose a = 0, then the potential (14) takes
the form

V (x) − E =
(

b2

2
+

j (j + 1)

2r2
+

bN

r

)
r ′2

m
+

3r ′′2

8mr ′2 − r ′′′

4mr ′ + Vm(x). (17)

In the above potential, the energy term on the left-hand side should be represented by a constant
term on the right-hand side. This condition can be satisfied when

(λ0 + λ1r
−1 + λ2r

−2)
r ′2

m
= 1 (18)

where λ0, λ1 and λ2 are constants. Choosing appropriate values of λ0, λ1 and λ2, one can
generate quantum mechanical potentials.

3.1. Coulomb family potentials

In order to generate Coulomb family potentials, we choose λ0 = 1, and λ1 = λ2 = 0. Solving
(18) for r and substituting into (17), we obtain the following potential

V (x) = j (j + 1)

2u2
+

Ze2

u
+ Um(x) (19)

with the eigenvalues

E = −Z2e4

2N2
(20)

where u = ∫ x

0

√
m dx,N = −j + n and the parameter b of the potential (17) is defined as

b = Ze2/N . The potential is isospectral with the constant mass Schrödinger equation. The
mass dependent function Um(x) is given by

Um(x) = m′

8m2

(
5m′

4m
− m′′

m′

)
+ Vm(x). (21)

3.2. Harmonic oscillator potential

The harmonic oscillator potential can be generated from (17), under the condition λ1 = 1/2,

and λ0 = λ2 = 0. In this case r = u2

2 , and the potential takes the form

V = (1 + 4j)(3 + 4j)

8u2
+

b2

2
u2 + Um(x) (22)

with the eigenvalues

E = −2bN (23)
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3.3. Morse family potential

Our last example in this class of potentials is the Morse family potential. This potential can be
obtained by setting parameters λ2 = 1/α2, and λ0 = λ1 = 0. Solving (18) for r we obtain
r = e−αu and the potential takes the form

V (x) = Nbα2 e−u +
b2α2

2
e−2αu + Um(x) (24)

with the eigenvalues

E = −α2

8
(1 + 2j)2. (25)

4. Hyperbolic and trigonometric potentials

In this section we construct hyperbolic and trigonometric potentials. Some of these potentials
have important applications in condensed matter phenomena because of their periodicity. As
we mentioned before, in the potential (14) a constant term should be represented with the
energy term. We discuss below the problem for various potentials.

4.1. Pöschl–Teller family potential

For the choice of r = e−2αu, a = 1, the result is

V (x) = α2

8
(b + 2N − 1)(b + 2N + 1) cosech2αu

− α2

8
(b − 2N − 1)(b − 2N + 1) sech2 αu + Um(x) (26a)

E = −α2

2
(1 + 2j)2 (26b)

which is the Pöschl–Teller potential. The function u is given by

u =
∫ x

0

√
m dx. (27)

For the given mass term, u should be integrable. The trigonometric form of the Pöschl–Teller
potential can be obtained by substituting α → iα. In this case the potential and its eigenvalues
are given by

V (x) = α2

8
(b + 2N − 1)(b + 2N + 1) cosec2αu

+
α2

8
(b − 2N − 1)(b − 2N + 1) sec2 αu + Um(x) (28a)

E = α2

2
(1 + 2j)2. (28b)
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4.2. Generalized Pöschl–Teller family potential

In order to construct the generalized Pöschl–Teller family potential, we introduce

r = e−αu a = 1. (29)

Substituting r into (14), the resulting potential and corresponding eigenvalues read as

V (x) = α2

8
(b2 + 4N2 − 1) cosech2αu +

α2

2
bN coth αu cosech αu + Um(x) (30a)

E = −α2

8
(1 + 2j)2 (30b)

The trigonometric form of this potential can be obtained replacing α by iα. Then the potential
is given by

V (x) = α2

8
(b2 + 4N2 − 1) cosec2αu +

α2

2
bN cot αu cosec αu + Um(x) (31a)

E = α2

8
((1 + 2j)2). (31b)

4.3. Scarf family potential

Let us now construct another potential by substituting r = i e−αu, a = 1 into equation (14).
In this case we obtain the PT symmetric [13] Scarf family potential that has been obtained by
Bagchi and Roychoudhury [14],

V (x) = −α2

8
(b2 + 4N2 − 1) sech2 αu +

iα2

2
bN sech αu tanh αu + Um(x) (32a)

E = −α2

8
((1 + 2j)2). (32b)

When we replace b → ib, the potential becomes the Scarf family potential. When we
replace α by iα, the potential becomes the trigonometric Scarf family potential,

V (x) = α2

8
(b2 + 4N2 − 1) sec2 αu +

α2

2
bN sec αu tan αu + Um(x) (33a)

E = α2

8
((1 + 2j)2). (33b)

The Scarf, PT symmetric Scarf and generalized Pöschl–Teller potentials are isospectral
potentials. The last six potentials have already been constructed by choosing r as an exponential
function. This property implies that these potentials form the same family potentials and they
can be obtained from each other by a simple coordinate transformation.

4.4. Eckart family potential

The Eckart family potential can be constructed by introducing r = coth αu
2 , a = 1. The

corresponding potential and eigenvalues are given by
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V (x) = α2

2
bN coth αu +

α2

2
j (j + 1) cosech2αu + Um(x) (34a)

E = −α2

8
(b2 + N2). (34b)

The trigonometric form of this potential can be obtained by the choice of

r = cot
αu

2
a = 1 b → ib (35)

then the potential (14) takes the form

V (x) = −α2

2
bN cot αu +

α2

2
(j (j + 1)) cosec2αu + Um(x) (36a)

E = −α2

8
(b2 − 4N2). (36b)

4.5. Hulthen family potential

Another important potential of the quantum mechanics is the Hulthen potential, the choice of
r = coth αu

4 , a = 1 produces the following potential,

V = (j (j + 1) + bN/2)α2 e−αu

2(1 − e−αu)
+

j (j + 1)α2 e−2αu

2(1 − e−αu)2
+ Um(x) (37a)

E = −α2

32
(b + 2N)2. (37b)

4.6. Rosen–Morse family potential

The last example in this category is the Rosen–Morse family potential. This potential is
isospectral with the Eckart family potential and can be obtained by introducing

r = coth
(αx

2
+ i

π

4

)
a = 1. (38)

Substituting (38) into (14), we obtain the following potential with the eigenvalues E

V (x) = α2

2
bN tanh αu − α2

2
j (j + 1) sech2αu + Um(x) (39a)

E = −α2

8
(b2 + 4N2). (39b)

In order to obtain trigonometric form of the Rosen–Morse family potential, we substitute

r = −i cot
(αu

2
+

π

4

)
a = 1 b → ib (40)

into (14) and obtain the following potential,

V (x) = α2

2
bN tan αu +

α2

2
(j (j + 1)) sec2 αu + Um(x) (41a)

E = −α2

8
(b2 − 4N2). (41b)

It is obvious that the Eckart, Hulten and Rosen–Morse family potentials can be mapped onto
each other by a simple coordinate transformation.
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5. Conclusions

In this work we have made a systematic study to obtain the exact solution of the PDM
Schrödinger equation within the context of the su(1,1) algebra. We have obtained a number
of potentials some of which are already known while others are new. Another issue here is the
choice of the parameters ρ, η and ε. It has been shown that the exact solvability of the PDM
Schrödinger equation is independent of these parameters.
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